
 1 

“Modeling somatic computation with non-neural bioelectric networks” 

 
Santosh Manicka and Michael Levin* 

 

 

Allen Discovery Center 

200 College Ave. 

Tufts University 

Medford, MA 02155 

 

* Author for correspondence: 

 Email: michael.levin@tufts.edu  

 Tel.: (617) 627-6161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:michael.levin@tufts.edu


 2 

Supplementary information 

1. Parameters of trained BEN models 
All parameters used for the networks in this manuscript can be downloaded at 

https://gitlab.com/smanicka/BEN. The parameters of a BEN network that are learned during 

training, regardless of the problem they are trained to solve, are the ‘weights’ and ‘bias’ 

(highlighted in red in Fig. 8). The weights represent the strengths of the connections between cells 

(hence a matrix), determining the direction and speed by which the corresponding gap junctions 

alter their permeabilities dynamically as a function of Vmem. The biases represent the thresholds of 

the cells (hence a vector), determining how the signaling molecule switches speed and direction 

of change in concentration in the cells. The data files contain the weight and bias details of the best 

network from each of the five experiments described in the main text (simple AND logic gate, 

simple XOR logic gate, tissue-level AND, pattern detector and the compound NAND logic gate). 

File names are self-explanatory. Each file contains labels like ‘Cell 1’, ‘Cell 2’ etc. indicating the 

cell numbers. In the case of the compound NAND logic gate, the labels also indicate which module 

a cell belongs to (AND, BRIDGE or NOT), for example, ‘AND Cell 1’, ‘BRIDGE Cell 10’, ‘NOT 

Cell 14’ etc. The ordering convention adopted for numbering the cells is illustrated in 

Supplementary Fig. S1. 

 

Supplementary figure S1. Numbering convention of the cells in a BEN network. Shown are a few examples of cell numbers in a 

sample network; the rest can be inferred. The lower left cell of the first layer is always numbered 1, while the highest numbered 

cell is the top right cell in the last layer. 

 

2. BEN achieves robustness to damage by distributing information 

Here, we present an analysis of the robustness of a nine-cell AND gate using the tools of 

information theory125. We wanted our network to be large enough to contain robustness 

characteristics (due to redundancy of function among the cells) but small enough to be amenable 

to analysis. First, we trained a nine-cell AND logic gate using backpropagation as described in the 

main text. Next, we knocked-off individual nodes that were neither input nor output cells, and then 

measured the performance of the resulting networks. Finally, we correlated the net amount of 

information about the inputs and outputs flowing through the rest of the nodes with the network 

performance upon removal of those nodes. We computed the information flow in the network 

using a Python package ‘IDTxl’125 that computes the conditional transfer entropy (the amount of 

https://gitlab.com/smanicka/BEN


 3 

mutual information between a source’s past state and a target’s present state, given the target’s 

past states) for every pair of nodes in the network (Supplementary Fig. S2). 

We conclude that the network is more robust to removal of nodes through which less 

information flows (Supplementary Fig. S3). Moreover, there is modularity in the network, where 

some cells contain more information about one input versus the other (Supplementary Fig. S4). 

For example, cell 7 contains disproportionately more information about input 2 than input 1, while 

cells 2 through 6 contain slightly more information about input 1 compared to input 2. The 

biological implication is that real somatic tissues may also possess such robustness of function to 

damage of cells, and the mechanism by which this occurs may be distributed information 

processing, redundancy and modularity. 

 

 

Supplementary figure S2. Physical and information-flow network depictions of a 9-cell AND gate. Color coding follows the same 

convention as in the main text. The edge weights of the physical network represent “meta weights” (see main text). The edges in 

the information-flow network are both weighted and directed: weights represent the amount of information-flow (measured by 

conditional transfer entropy) and directions represent the direction of the flow. Notice that corresponding weights are similar in the 

two networks, although there are some noticeable differences as well. Lastly, the information-flow network contains edges that are 

not present in the physical network; for every such edge an indirect path can be traced in the physical network. 



 4 

 

Supplementary figure S3. The relationship between information-flow and robustness to node damage. The heights of the bars 

represent the total amount of information about the inputs and output combined flowing through a node. Clearly, nodes that conduct 

more information are relatively more important to the functioning of the network: disabling them results in higher performance 

error of the whole network. 

 

Supplementary figure S4. Modularity in information-flow. A form of specialization has emerged in this network: node 7 conducts 

disproportionately more information about input 1 compared to input 2 than any other intermediate cell, while all other cells conduct 

relatively more (but not disproportionately more) information about input 2 than about input 1. This segregation of knowledge 

about the inputs reflects the generic notion of modularity that biological systems are replete with both in terms of structure and 

function.  



 5 

3. Alternative approaches to training BEN models 

BPTT is just one of the many possible machine learning methods that can be used to train BEN 

models. To demonstrate that BEN networks can in principle be trained using other methods, we 

chose an alternative to gradient descent namely evolutionary optimization; genetic algorithms 

(GA) is an example of this class. Here, we used a GA to train a BEN network to function as an 

AND gate. Note that we didn’t combine BP with GA for this example, unlike the tissue-level AND 

gates and the pattern detector discussed in the main text. We used the microbial GA (see ‘Methods’ 

section of the main text) with a population of 100 BEN networks, and a range of parameters 

including a recombination rate of 7-10%, a mutation rate of 5-10% and a deme size of 5-10. We 

found that none of the runs evolved a network to attain the optimum error (Supplementary Fig. 

S5), demonstrating the inferiority of GA compared to BPTT for training BEN networks. We then 

implemented a run by seeding the population with a previously best-known AND gate obtained 

through BPTT training, and injected Gaussian noise into the population. This led to the evolution 

of a BEN network that crossed the optimum error threshold (black line in Supplementary Fig. S5). 

 

 

Supplementary figure S5. Performance errors of the best individuals in each iteration of the GA from four different runs indicated 

by the different colors. The black line represents a run with a population that was seeded with a previously trained (with BPTT) 

AND gate; Gaussian noise was injected into the population before initiating the run. The horizontal red dashed line indicates the 

optimum error required for a BEN network to qualify as a logic gate. 

4. Designing and training a compound logic gate 

Constructing a compound logic gate using pre-trained modules requires more than simply 

connecting the two modules. This is because, unlike genetic networks and neural networks which 

are directed, BEN networks are bidirectional due to the symmetric nature of gap junctions. 

Therefore, if the modules are simply connected together, then the output of one module will also 

receive signals from the input of the connected module. This could potentially result in the 

upstream module outputting the wrong state, and thus the downstream module receiving and 



 6 

outputting the wrong states as well. To mitigate it, we included an “asymmetric bridge” layer 

(Supplementary Fig. S6) that interfaces the modules and trained it so that the compound gate as a 

whole behaves as desired: the downstream module outputs the correct state for every set of inputs 

received by the upstream module. The asymmetric aspect of the bridge lies in the differential 

connectivity to the upstream and downstream modules. First, only one node in the bridge is 

connected to the output of the upstream module, thus effectively creating a bottleneck between the 

two modules and minimizing the influence on the upstream output due to downstream noise. 

Second, all of the rest of the bridge nodes are connected to the input of the downstream modules=, 

thus maximizing the chances of passing down information reliably from the upstream module. For 

this particular experiment, we chose a bridge consisting of a single layer of 10 nodes connected as 

a chain. We explored various settings for training the NAND gate: (1) Specified the states of the 

inputs and outputs as in any other logic gate; (2) specified the states of the output and the input 

nodes of the upstream and downstream modules respectively; (3) trained the AND and NOT 

modules by accommodating intrinsic activity, as in the French-flag detector; and (4) trained the 

AND and NOT modules by outputting a Vmem of 0 mV when inputs are equal to 0 mV, thus creating 

a “scaffold” attractor for the modules to use as an intermediate step to overcome the effects of 

inter-module dynamics. We found that settings (3) and (4) were crucial to training the NAND gate. 

In particular, setting (4) manifests itself during the last phase of the simulation when both inputs 

are high; the output lingers around 0 mV (the scaffold attractor) for a while before “hammer-

throwing” itself out of it into the correct attractor (time point 4 in Fig. 7). 

 

 

Supplementary figure S6. The architecture of a compound logic gate, specifically a NAND gate. The overall layout consists of three 

parts, namely the upstream (AND), the bridge and the downstream (NOT) modules. The AND and NOT modules are pre-trained, 

and only the bridge (blue) is trained here. The overall gate still consists of two inputs (orange and purple nodes) and a single output 

(green).  

 


